A Relativistic Conical Function and its Whittaker Limits

نویسنده

  • Simon RUIJSENAARS
چکیده

In previous work we introduced and studied a function R(a+, a−, c; v, v̂) that is a generalization of the hypergeometric function 2F1 and the Askey–Wilson polynomials. When the coupling vector c ∈ C is specialized to (b, 0, 0, 0), b ∈ C, we obtain a function R(a+, a−, b; v, 2v̂) that generalizes the conical function specialization of 2F1 and the q-Gegenbauer polynomials. The function R is the joint eigenfunction of four analytic difference operators associated with the relativistic Calogero–Moser system of A1 type, whereas the function R corresponds to BC1, and is the joint eigenfunction of four hyperbolic Askey– Wilson type difference operators. We show that the R-function admits five novel integral representations that involve only four hyperbolic gamma functions and plane waves. Taking their nonrelativistic limit, we arrive at four representations of the conical function. We also show that a limit procedure leads to two commuting relativistic Toda Hamiltonians and two commuting dual Toda Hamiltonians, and that a similarity transform of the function R converges to a joint eigenfunction of the latter four difference operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMUM DESIGN OF FILAMENT–WOUND LAMINATED CONICAL SHELLS FOR BUCKLING USING THE PENALTY FUNCTION

Optimum laminate configuration for minimum weight of filament–wound laminated conical shells subject to buckling load constraint is investigated. In the case of a laminated conical shell the thickness and the ply orientation (the design variables) are functions of the shell coordinates, influencing both the buckling load and its weight. These effects complicate the optimization problem consider...

متن کامل

Whittaker Limits of Difference Spherical Functions

1.2. The length on Ŵ 9 1.3. Reduction modulo W 9 1.4. More notations 11 1.5. Main definition 12 2. Polynomial representation 13 2.1. Macdonald polynomials 14 2.2. Symmetric polynomials 15 2.3. Using intertwiners 16 2.4. Spherical polynomials 18 2.5. The limit t → 0 19 3. Spherical and Whittaker functions 20 3.1. Gauss-type integrals 21 3.2. Global spherical function 22 3.3. Global Whittaker fun...

متن کامل

Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.

In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...

متن کامل

Focusing of an Intense Relativistic Electron Beam by a Hollow Conical Laser Beam *

für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...

متن کامل

Conical Conformal Antenna Design using the CPM Method for MIMO Systems

Abstract- In this article, the design of conformal antennas has been discussed using the characteristic modes (CM) method. For this purpose, the vector wave function(VWF) has been utilized to achieve a two-dimensional mapping of the conformal antenna. In designing and analyzing of cone-shaped antennas applicable for multi-input multi-output (MIMO) systems, the most important goal is to achieve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011